
DATA SHARING IN DISTRIBUTED COMPUTING SYSTEMS

Fabio Schreiber,
Università di Parma
Parma, Italy

In this chapter the different ways of sharing data through computer networks are
reviewed, and attention is focused on distributed databases. The distribution
features of a DDB are examined with respect to the application needs. Possible
architectures for a DDB management system are considered and a quick mention is
made of the problem of keeping data integrity.

1. INTRODUCTION

The availability of commercially operated computer networks has brought to an
outstanding level the importance of software shareability and transferability among
many different users, working on different computers. In fact, even if the efforts of
achieving program portability from one machine to another are as old as
programming itself, they have not achieved, to date, highly satisfactory results and
everybody has undergone the frustrating experience of transferring a standard
Fortran routine from one machine to a different one having to recode more or less
extended parts of it. In a computer network, where software sharing by hundreds of
users is standard and fundamental, the capability of a highly efficient and reliable
transportability becomes vital; the possibility of on-line operation makes the request
for efficiency much more dramatic than when sharing occurs by sending magnetic
tapes around the world.
While other parts of this volume focus on the problem of program sharing, in this
chapter we shall point out the major issues in sharing data among a community of
users and we shall show, in particular, the architectures and the functions of
Distributed Database Management Systems (DDBMS).
It is worth mentioning that, while the sharing of programs is mainly achieved by
means of techniques which enhance their portability, the sharing of data is mainly
achieved by techniques which access them where they are "naturally" stored. The
rationale for that lies in the very large volume of many databases which makes it
very expensive, if not impossible, to move them around the world.

- 2 3 5 -

D. T. Muxworthy (ed.). Programming for Software Sharing, 235 246.
Copyright C 1983 ECSC. EEC. EAEC. Bruneis and Luxembourg.

Therefore, since the beginning of the distributed computing systems era, data have
been considered one of the most interesting resources to be shared in the system, and
a considerable number of studies have been made and prototype systems for
distributed data management have been implemented in recent years. The reasons
claimed for such an interest are many; among them the following can be mentioned:
— Reliability: a strongly centralized system is highly vulnerable to damage caused
by hardware and/or software failures or by inadvertancy. Once damaged, operation
is denied to everybody. On the other hand, a distributed system, even if suffering
from failures, undergoes a graceful degradation, still allowing users to operate on it
with a reduced functionality. Conversely recovery procedures, to reestablish data
integrity in a distributed system after a failure, are more complex, as we shall see
later on.
— Load sharing: computing centers having complementary utilization profiles can
be connected into a distributed system in such a way as to better utilize existing
resources by sharing the total load among them. Even the time difference between
two computing centers placed far away from each other could be a reason for
sharing computing power among similar loads but with peaks occurring at different
"system absolute time".
— Resource sharing: one of the most popular reason claimed for distributed systems
is the possibility of using very specialized resources ranging from entire computers
(e.g. ILLIAC IV array computer), to special terminals (e.g. graphical plotters or
displays, robot arms, etc) to specialized software (e.g. special compilers, application
programs, etc), to common data (i.e. distributed databases), which are held in a
common pool.

— Efficiency: handling very large masses of centralized data can result in a loss of
efficiency of the system. For example, the unloading and reloading of a database to
perform physical reorganization and maintenance can be a very long operation
resulting in reduced availability. Also response times can be severely affected if the
database grows above a critical size. In a distributed system these deficiencies can be
overcome by a suitable distribution of data among the different machines allowing
the optimization of several parameters.
— Efficacy: a distributed philosophy naturally allows the decomposition of a
complex multifunction system into a set of simpler interconnected systems, each of
them being specifically designed to perform at the best cost/performance level. Also
a better service to the user is claimed for distributed systems, even if this factor
cannot be easily defined and quantified.
— Flexibility: a distributed system, by its own nature, can grow and modify its
structure without major restructuring efforts. Often, components of the system can
be added or taken away only by modifying some system tables without disturbing
the on-going operations. This fact allows a "physiological" fitting to the needs of
the organization the information system works for.
— Human engineering: a very strong centralization of EDP services has proved
harmful to the psychological attitudes of the employees and of the middle
management; lots of misunderstandings arose between the end users and the system
analysts placed far apart from each other, and in many cases they led to the
rejection of the computing services by the end users themselves. Also, the sense of

• 2 3 6 -

power associated with the possession of data contributed to the success of a
decentralized philosophy for the EDP systems and data management.
— Economy: some authors claim also economical reasons in favour of distributed
information systems. However, too little experience has been gained up to now on
the economical dynamics of distributed systems to formulate conclusions. We can
only point out that while the hardware costs are decreasing, the costs of software
tend to rise (or to remain constant, at best) penalizing the considerably higher
amount of complexity involved in the system software to control distributed
systems. On the other hand, the costs of telecommunication facilities, the third
component of distributed systems, are heavily affected by political factors, which
mainly dictate the leasing tariffs.

2. DATA SHARING IN THE DISTRIBUTED ENVIRONMENT

When speaking of distributed computing systems we mean a collection of
computing devices connected through telecommunication facilites. However the
connection can be made in many different ways, giving rise to very different families
of systems. In particular we shall mention three main classes:
a) Tightly coupled systems

This class includes multiprocessor devices which communicate through one or
more shared buses and/or one or more shared memories.

b) Loosely coupled/high bandwith systems
This class includes those systems constituted by many processors connected
through serial high-bandwith telecommunication lines such as coaxial cables or
optical fibers. They are usually called Local Computer Networks.

c) Loosely coupled/low bandwith systems
This class includes those systems constituted by many processors connected
through serial low-bandwith telecommunication lines such as the telephone or
the data networks. They are usually called Geographical Computer Networks.

The system architecture heavily influences the structure of the data management
system. Systems of type a) can be usefully used in building database machines, i.e.
special purpose computers entirely devoted to the management of large quantities of
data. Systems of type b) tend to be used in connection with a distribution-by-
function philosophy. In this case the machine devoted to data management is called
a back-end computer, even if this name is not peculiar to such architectures. The
back-end computer can be a general purpose machine on which the database
management system runs as the only function, or it can be a database machine.
Finally, in systems of b) and c), data can be stored at different nodes in the form of
local databases, which can be accessed by any other node through the computer
network.
In the following we are going to examine this solution in more detail. Fig. 1 shows a
computer communication network with several host (nodes) connected to it.
In such a structure many different ways of sharing data are possible, and have been
described in the technical literature. In this section, we are going to mention very
briefly those which are the most typical. Then, in the rest of the chapter, we shall
focus our attention on the most evolved: the Distributed Database (DDB).

- 2 3 7 -

Fig. J

Independent Databases Connected to a Computer Network
The development of commercial computer networks like ARPANET, DATAPAC,
EURONET, INFONET, TELENET, TRANSPAC, and many others, allows
network users to access remotely databases, existing on host computers connected to
the network itself. These databases, however, are completely independent both as to
their contents and as to their management systems (Fig. 2).

Fig. 2

What differentiates this system from a classical centralized teleprocessing (TP)
system is the fact that the computer network allows a homogeneous connection with
many different machines and, hopefully, lower operational costs.

Independent Databases with a Standard Command Language
This kind of system is a direct evolution of those described above. In this case it is
still the task of the user to connect himself to the appropriate host computer and to
ask it for access to the database he wants to interact with. However, the user is now
freed from the need of knowing the details of the database itself and of its
management system since he is provided with a standard command language which
interfaces all the — possibly heterogeneous — local data management systems
(Fig. 3).

Fig. 3

■238-

Such a kind of system is represented by the DIANE service, which is offered by
EURONET, interfacing as many as 300 Databases stored at 36 different Hosts
(April 1982).

Distributed Database
For many years, database has been a synonym for a highly centralized data
organization. This is not in contradiction with a physical partitioning of data among
many different sites. In fact, what distinguishes a distributed database from the
systems described in the preceeding sections, is that the data, even if stored at
different sites, all belong to the same universe and are logically related with each
other. Therefore the user is given only a global knowledge either of the whole
database (network or global conceptual schema) or of part the database relevant to
his application (global external schema), and an integrated access method which
makes the physical data location transparent to him. Moreover, the integrity and
consistency of the whole database must be preserved at all sites, in spite of possibly
partially executed transactions aborted while operating on several sites
simultaneously (Fig. 4).

Fig. 4

3. DISTRIBUTION FEATURES IN A DDB

Necessary for the existence of a DDB are the distribution of the processing power
(i.e., the existence of a computer network) and a physical distribution of data.
However a third parameter, the control over the DDB, further partitions the DDB
systems into two major classes:
— Hierarchical DDB's, when a master node exists in the system which controls the
flow of the distributed operations in the whole DDB - exceptions being made for
those operations belonging to a transaction which can be completely processed at a
single site (local transactions). The control is kept over the update operations (e.g.
for integrity, consistency, etc.) the locking conditions (e.g. for deadlock prevention
and resolution), the recovery operations, etc. Even if such a control philosophy has
many limitations, because the master node can easily become a bottleneck, it can be
usefully used, taking advantage of the greater implementation simplicity, in those
information systems which are hierarchical by their very nature or which are built on
a hierarchical (star or tree-shaped) computer network.
— Distributed control DDB's, when the control over the DDB is distributed among
the different nodes the system and is performed through an exchange of messages
and parameters among them. The obvious advantages of the distribution are now
balanced by a considerably higher complexity of the DDBMS software and, in
general, by a lower efficiency.

■ 2 3 9 -

As to data, they can be distributed in many different ways. In the simplest cases the
distribution is made at the file level, that is the logical file is also the unit of physical
distribution. However, in many applications it is convenient to consider a
partitioning below the file level. In this case we can consider the logical file
composed of many records subdivided into fields, and we can consider its
partitioning into physical fragments in one, or in a combination, of the following
two modes:
— Horizontal partitioning: all the fragments have the same logical structure (i.e.,
the same sequence of fields); records belong to a fragment according to some
distribution criteria. This corresponds to making a selection on a field value which is
characteristic of a particular node.
— Vertical partitioning: the structure of the distributed fragments is derived from
the structure of the original file by subsetting (or projection) operations, i.e. by
storing only some fields at each node. Each logical record is then fragmented into its
vertical partitions and then stored in the DDB.
Until now we have not considered the possibility that data be stored in multiple
redundant copies at different sites. Historically, this was one of the first forms of
DDB to have been considered and the reasons in favour of data replication lie in an
increased reliability, shorter response times to enquiries, and cost optimization.
However the existence of multiple copies of a data item poses some problems as to
the consistency of the different copies when updating operations occur, i.e. how
much and how long the contents of the different copies can be different. Some
applications ask for a very tight consistency, that is the contents of every copy must
exactly the same at every moment in such a way as a query could not distinguish
from which copy the answer came; other applications can require only a weak
consistency, in the sense that only one copy of the data item is updated by a
transaction, while all others are updated in a deferred mode by the DDBMS. More
precisely, we can consider the DDB under the following aspects:
a) Permanence: data items can be permanently distributed, i.e. once loaded they
have a life of their own, or temporarily distributed, i.e. a master data item exists and
replicated copies are distributed when and where they are needed; possibly they
must be refreshed from the master copy to keep consistency.
b) Consistency: the copies of a replicated data item are fully dependent on each
other when tight consistency is required; they are partially dependent when weak
consistency is sufficient; they are independent where updates on one copy do not
affect the other copies of the data item. It must be noticed that independence does
not necessarily imply the lack of interrelations among the different copies; since it is
often used together with temporary distribution, consistency is kept only at the level
of the master copy and hence by refreshment of the other copies.
Often the choice among the different features is dictated by the peculiarities of the
applications the system is built for. In many cases queries are real distributed
process, while updates are made only on local data. Also, the mode of operation —
batch, real time, etc. — can influence the distribution feature of the DDB system.

•240 -

4. ARCHITECTURES FOR DDBMS

Gross Architecture
In designing a DDBMS the first step is to define its gross architecture. In the field of
the centralized DBMS a considerable popularity has been gained by the
ANSI/SPARC model, which should allow a maximum of physical and logical data
independence. It defines three layers, called schemata:
— The Conceptual Schema which represents the data belonging to the whole

organization, as seen by the enterprise administrator;
— The External Schemata each of which represents the "view" of the organization

as seen by a particular application program;
— The Internal Schema which represents the way data are physycally stored in the

system.
When several DBMS have to cooperate in a distributed environment to constitute a
DDBMS, a fourth level has to be added: the Network Schema (NS) or Global
Conceptual Schema, mentioned before, which defines the data global to the whole
distributed database. We shall not go into a detailed discussion of the possible
different architectures arising from the level at which the NS is placed in the model,
but we shall only show two of them which are the most general:
a) The Integrated DDB (Fig. 5). In this architecture the ownership of data stored in
the local DDB belongs to the distributed computing system. All the external
schemata are defined starting from the NS which represents the logical union of the
logical conceptual schemata existing on the different nodes.

EXTERNAL SCHEMATA

Fig. 5 - Logical Architecture of an Integrated DDB

-241 ■

LOCAL EXTERNAL
SCHEMATA

GLOBAL EXTERNAL
SCHEMA

LOCAL EXTERNAL
SCHEMATA

LOCAL
CONCEPTUAL
SCHEMA

Fig. 6 - Logical Architecture for an Aggregated DDB

b) The aggregated DDB (Fig. 6). In this architecture the ownership of data belongs
to the local system, which decides which of them are to be shared in the distributed
system. In this case on top of the internal schema, which refers to physical data in a
undifferentiated mode, two conceptual schemata are built, one for pure local
information, the other for information which is to be shared in the network.
The integrated approach is easy to implement when a system has to be built from
scratch, and even better if it is a homogeneous one - i.e., every local host has
identical hardware, operating system, and DDBMS as all the others. The aggregated
approach is well suited when the DDBMS has to be built interfacing several existing
local systems, which very often are heterogeneous - i.e. they differ as to the
hardware and/or as to the system software. However the aggregated approach can
be used whenever privacy constraints are very strong and the amount of shared data
is much lower than that of data which are only of local interest.

Software Architecture
Going into the inner architecture of a DDBMS, we recognize that the functions the
software must perform are, generally speaking, the following:
— to create and maintain the DDB;
— to process the application transactions;
— to cope with hardware and software failures.
In the following we shall briefly discuss the mechanism of transaction processing,
using the model of fig. 7. On the left hand side the logical levels are shown, in the

• 2 4 2 -

center the evolution of the transaction and the relevant software functions and on
the right hand side the additional information required to process it. We shall use a
block numbering from the top to the bottom to identify each block.
Block 1
The first function performs the translation of the transaction from the external
schema language, in fact in the most general case all the data models used in the
different schemata can be different. The translation makes use of the mapping
between the two schemata and some semantical integrity constraints can be checked
at this level.
Block 2
Formal correctness and authorization constraints must be checked before going on.
These operations are done with the aid of the data dictionary.

si

1

o
υ
■a
o

1
δ o Ä.

ii
s .s

¡s«

Query expressed in the
external language

Translator T,

Query expressed in the
network language

Validity control and
access authorization

Optimization of query
decomposition

Distribution of
subqueries

Network interface

Y
Network interface

1
Translator T2

Query expressed in the
local conceptual language

t
Translator T3

Query expressed in the
local internal language

Access Method

Instructions directed
to mass storage

Q

θ
β
e

Mapping External/
Global Conceptual Schema

Data Dictionary

Mapping Global/Local
Conceptual Schema

Mapping Local Conceptual/
Internal Schema

Mapping Internal Schema/
Physical Structure

Fig. 7 Reference architecture

Block 3
A complex transaction involving data stored at many different nodes must be
decomposed into many simpler transactions. This operation is very critical and it
can be done in many different ways. A lot of work has been done and is still in

■ 2 4 3

progress to obtain the maximum of efficiency by reducing the amount of data to be
transferred through the network.
Block 4
The elementary transactions are sent to the execution node. This phase requires
resource locking and synchronization mechanisms. Distributed concurrency
control, distributed deadlock, and recovery are another area which stimulates much
research.
Block 5
The network interface must offer a high level communication protocol for the
colloquy among the local DBMS.
Block 6, 7, 8
These blocks correspond to the operations made by the local DBMS's where, by
means of the mapping functions and of the file system, transactions expressed in a
local conceptual language are translated into commands for the mass storage.
All these functions and the relevant software modules can be found, even if in
different forms, in all the prototype DDBMS which have been developed and are
under development (SIRIUS/DELTA, CÖSYS, SDD-1, POREL).
Processing distributed transactions, however, poses hard problems as to keeping
data integrity when something goes wrong somewhere. In fact we saw that in Block
4 locking mechanisms can be set up; therefore either local or general deadlock
conditions can arise somewhere and for this or for other reasons, an elementary
transaction, belonging to a single global transaction, must be aborted. If the
transaction was updating the database, all the actions triggered by the transaction
must be aborted, and their effects cancelled wherever they took place, and the
database must be restored to its original state to assure data integrity.
Therefore special protocols have to be designed to coordinate the actions of the
elementary transactions on every involved site, in such a way as either all of them
perform or all of them are aborted and their side effects are cancelled. Such a way of
operation violates somehow the assumption of autonomy of local sites, however it is
the only known way to obtain a distributed recovery procedure. These protocols
have a two-phase structure; in a first phase the sites prepare themselves to perform
the elementary transactions and send each other "ready to perform" messages. If all
the sites are actually ready, in the second phase the transactions are performed.
Otherwise, if at some site the elementary transaction was aborted, no "ready"
message can be issued from it and in the second phase all the elementary
transactions are aborted, and the local DB are recovered on the basis of "in doubt"
back-up log files which had been built before updating the DB.

5. CONCLUSIONS

The purpose of this chapter was to give a simple introduction to the problem of data
sharing in distributed systems, therefore many topics have been treated in a very
concise way, while many others have been purposely left out. In the bibliography
some papers are listed, out of a fast growing literature, which can help the reader to
go deeper into the subject.

-244-

BIBLIOGRAPHY

A - General Topics

Adiba M., Chupín J .C, Demolombe R., Gardarin G., Le Bihan J. (1978) Issues in Distributed Data
Management Systems: a Technical Overview. In Issues in Database Management, H. Weber and A.I.
Wasserman (Ed.), North-Holland, pp. 127-133.
Aschim F. (1974) Data Base Networks: an Overview. Management Informatics, vol. 3, n. 1, pp. 13-27.
Baldissera C , Ceri S., Schreiber F.A. (1979) Basi di Dati Distribuite. Rivista di Informatica, voi. IX,
n. 3.
Emery J.C. (1977) Managerial and Economie Issues in Distributed Computing, in Information
Processing 77, Gilchrist (Ed.), North-Holland, pp. 945-955.
Rossetti Α., Schreiber F.A. (1978) Architetture alternative del sistema di elaborazione per un sistema
informativo aziendale. Automazione e Strumentazione, voi. XXVI, n. I, pp. 7-17.
Spaccapietra S. (1978) Problématique de conception d'un Système de gestion de bases de données
reparties. These á l'Université Paris VI.
Schreiber F.A., Di Filippo C. and Zagolin M. (1980) Un processore per l'interfacciamento di sistemi
eterogenei di Information Retrieval su una rete di calcolatori, Atti AICA 80, voi. 2, Bologna, Ott.
1980, pp. 1245-1263.

Β - Application Features

Giovacchini L., Schreiber F.A. (1976) Some Considerations on Distributed Management Information
Systems, Proc. Int. Symposium on Technology for Selective Dissemination of Information, IEEE
Press, pp. 102-109.
Paolini P., Pelegatti G., Schreiber F.A. (1972) An Application Oriented Approach to Distributed
Databases. Proc. Journées AFCET sur les bases de données repartities, pp. 139-151.
Rossetti Α., Schreiber F.A. (1978) Architetture alternative del sistema di elaborazione per un sistema
informativo aziendale, Automazione e Strumentazione, voi. XXVI, n. 1, pp. 7-17.

C - Allocation Problems

Casey R.G. (1972) Allocation of Copies of a File in an Information Network, Proc. Spring Joint
Computer Conference, AFIPS Press.
Chu W.W. (1973) Optimal File Allocation in a Computer Network. In Computer Communication
Networks, N. Abramson, F. Kuo (Eds.) Prentice Hall.
Levin D.K., Morgan H.L. (1977) Optimal Program and Data Location in Computer Networks,
Communications of the ACM, vol. 20, n. 5.

D - Architectures

Adiba M., Chupín J .C, Demolombe R., Gardarin G., Le Bihan J. (1978) Issues in Distributed Data
Base Management Systems: a Technical Overview. In Issues in Database Management, H. Weber and
A.I. Wasserman (Ed.), North-Holland, pp. 127-153.
Baldissera C , Ceri S., Schreiber F.A. (1979) Basi di Dati Distribuite. Rivista di Informatica, voi. IX,
n. 3.
Biller H., Neuhold E.J. (1977) POREL: A Distributed Database on an Inhomogeneous Computer
Network. Proc. 3rd International Conference on Very Large Data Bases.
Rothnie J.B., Goodman N. (1977) An Overview of the Preliminary Design of SDD-1, a System for
Distributed Data Bases. Proc. 2nd Berkeley Workshop on Distributed Data Management and
Computer Networks.
Spaccapietra S. (1978) Problématique de Conception d'un Système de Gestion de Bases de Données
Réparties. Thèse à l'Université Paris VI.

-245-

Toth Κ.C, Mahmoud S.A., Riordon J.S., Sharif O. (1978) The ADD System: An Architecture for
Distributed Databases. Proc. 4th International Conference on Very Large Data Bases.
Tsichritzis D., Klug A. (Eds.) (1977) The ANSI/X3/SPARC DBMS Framework. Report of the Study
Group in Database Management Systems, AFIPS Press.

E - Query Processing

Bracchi G., Baldissera C , Ceri S. (1979) Query Processing Strategies for Distributed Database
Processing. EEC-CREST Advanced Course on Distributed Data Bases, Sheffield City Polytechnic.
Hever A.R., Yao S.B. (1978) Query Processing on a Distributed Database. Proc. 3rd Berkeley
Workshop on Distributed Data Management and Computer Networks.
Pelagatti G., Schreiber F.A. (1979) A Model of an Access Strategy in a Distributed Database. In
Database Architecture, G. Bracchi; G.M. Nijssen (Eds.); North-Holland.
Wong E. (1977) Retrieving Dispersed Data from SDD-1: a System for Distributed Databases. Proc.
2nd Berkeley Workshop on Distributed Data Management and Computer Networks.

F - Data Integrity and Reliability

Colliat G., Backman C. (1979) Committment in a Distributed DB. In Database Architecture, G.
Bracchi, G.M. Nijssen (Eds,), North-Holland.
Lindsay G.B., Selinger P.G. (1979) Notes on Distributed Databases. EEC-CREST Advanced Course
on Distributed Data Bases (Integrity), Sheffield City Polytechnic.
Martella G., Ranchetti B., Schreiber F.A. (1981) Availability Evaluation in Distributed Database
Systems. Performance Evaluation. Vol. 1, n. 3, pp. 201-211.

-246-

